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A problem involving unsteady rectilinear motion of a source in a fluid of 
finite depth is considered. A similar problem for a pressure pulse applied 
to the surface of a deep fluid was considered in [i] with the aid of the 
integral transform method. 

Extensive use in the solution of wave problems has lately been made of 
Green's functions constructed in various ways. This approach is used here 
to investigate the unsteady motion of hydrodynamic singularities. 

i. Following Kelvin, let us consider the unsteady motion of a source of 

intensity Q(t I ) as the result of the superimposition of disturbances from 

several pulse sources that exist for infinitesimal time intervals Art and 

at each point of the path traversed by the source displace a volume of fluid 

Q($1 )Atl- We then obtain the following expression for a source situated at 

the point (0, O, zt ) of the bound coordinate system (*) moving with the velo- 

city c(t~ ) in the positive dlrectlon along the x-axis 

t t 
A 

\ Q (tl)¢ (x + s, y, z, z1, t - tl) dtl, s = Ic (1.1) 
• t: 

where ~ (X, y, Z, Zl, t -- tx) is a potential of a pulse source of unit inten- 

slty. 

To determine the potential 

Green's function [2] 

G = O-(t - -  t 0 ~ k  ( z , +  H) [,uakz 
2~ ~ ~ - # f f  L 

o 

r = V x 2 +  y~, 

we can make use of the time-dependent 

~ kcosla k Z @- H) I -- costaahkHZl ( t - -  t~)] J o ( k r ) d k 

z~ = V gk't~, kH 
(1.2) 

*) With the origin lylr~ on a free surface and the z-axls directed vertically 
upward. 
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66 A.J. Smorodln 

The function G gives the solution of the problem of a source of unit 

intensity which arises at the instant t~ at some point of the stationary 

fluid and then continues to exist unchanged. 

Since it is important in the discussion to follow that no motion occurs 

for ~ < tl, the rlght-hand side of (1.2) has been multiplied by the function 

8(t -- tl ) which is equal to one for t > t~ and to zero for t < tL 

In order to obtain the potential of the pulse source it is clearly suffi- 

cient to consider the difference in the functions G for the two sources of 

intensity q whose time of appearance differs by an infinitely small amount 

gtl, and to have Ate- 0 . If, further, we stipulate that ~A~i - I , we find 

that 
oG At  OV (1 .3)  ~=q[G(t--tl)--G(t--t~A4)llat,~o=--q~i~, l = ' ~ t  - 

or, differentiating ii.2), that 

6 ( t - -  tl) ~ k z ~ k  (zl 4- H) 
= 2-----n--- ~ ~ Jo (kr) dk 

0 

O(t--t l)  g I keo~k (z + H ) ~ ( z ,  4-H) sin Ca ( t - - t t ) J o ( k r ) d k  (1.4) 
2~ ~ico ~ kH 

0 

where ~ (t-- /1) is the Dirac delta function. 

To obtain the potential of the moving source in accordance with (I.i), 

we integrate (1.4), 

¢X) -~ Q (t)2~O (t) I ,iroa kz.coahkco,h kH(Zl Jr- H) Yo ( kr) dk - -  
0 

t 

0 0 

× sin z~ (t - -  4)  Jo [kV'ix + s) ~ + y~ ] dk (I .5) 

whence as g ~ ® we have the familiar solution of Sretenskil [3] • 

The ordinates of the free surface under the usual assumptions of small- 

amplitude wave theory can be defined as follows: 

0. 0.]} 
=-g Cox ~ z=o 

I n  t h e  s i m p l e s t  c a s e  w h e r e  a s o u r c e  o f  i n t e n s i t y  

move f r o m  t h e  s t a t e  o f  r e s t  w i t h  a c o n s t a n t  v e l o c i t y  

s - (~ -- t~) v , we have 

Q¢ 

= ~° : 2ngft ~ 

(i.6) 

Q - c o n s t  b e g i n s  t o  

o , i . e .  w h e r e  

(t.7) 

' I +:'}f J°I  + + 
o o 
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In this expression 
x Y ~1 = zl c n = g ,  g ,  v-v - 

a = k H ,  a = V a ~ . h a ,  T = t \ H  ] , ~z  = ( t  - -  t l )  \ ~  ] 

Changes in the ordinates of the free surface ¢ m C(T) at various instants 

of time are shown in Fig.l, which contains the results of computing integral 

(I.7) for ~ = 0 , v = 0.5 and Cl = -- 0.5 on a computer (curve i). 

As ~ ~ ® , (I.7) can be used to obtain expressions for the ordinates of 

the free surface with steady source motion. Specifically, for ~ - 0 we 

have 

- - 1  
o-----og 

~ ° "  ~ ~--0 

g 

0 

-2 

d" 
Fig. 1 

~(oo)= S I + S ~ _ _ O a  

I I ~o~h~ (t ÷ ~) s in  ~ da 

0 

t ~ aco lha ( t+~ l )  COS~ da  
$2 = T ¢o,h ~ v 1/a2v~ __ ~2 

$ 3  : - ~  gosh Ct 
0 0 

× cos z (~, - -  ~) d~ d~ Y 

(1.~) 

where a o is a root of the equation a- av. 

Fig. 2 (curve l) depicts the shape of the free surface with steady motion 
of the source Just considered. Trial calculations show that for large values 
of g and T , numerical integration of (I.7) and (1.8) becomes practically 
impossible due to the inordinately large amount of computer time required. 

Q 

_g - -  ! 

3 

6 

\ i t t l ,  
' i t  
v 

Fig. 2 

These difficulties have to 
do with the oscillatory char- 
acter of the integrands in (1.7) 
and (1.8). At the same time, 
we know that integrals of rapldly 
oscillating functions are 
approximated quite closely by 
their asymptotic expansions. 
Such expansions can be obtained, 
for example, with the aid of 
the stationary phase principle. 
But the stationary phase for- 
mula gives only the first term 
of the asymtotic expansion and 
can be applied only when the 
denominator of the Integrand 
does not vanish. For this rea- 
son, we will obtain the asymp- 
totic expansions of integrals 
of more general form. 
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2. The integrals of rapidly oscillating functions encountered In the 

solution of wave problems can in most cases be written in the form 

Y 

I = ~/~ (u) e~(") d= (2.1) 
,~ l~ (u) 

where  k i s  a l a r g e  p a r a m e t e r ,  and ~ ( u ) ,  f ,  (u)  and 3"=(u) a r e  d i f f e r -  

entiable f o r  ~ U ~ T .  

If ~'(u) # 0 and fs(u) # 0 within the limits of integration, then in 

order to obtain the asymptotic expansion it is sufficient to integrate (2.1) 

by parts, whereupon each integration yields the next succeeding term of the 

expansion [ 4 ] .  

Cases involving "slngularltles" -- zeros in the denominator or zero values 
Of the derivative of the phase function in the trigonometric factor (station- 
ary points) require special consideration. It turns out to be possible to 
represent the InteEral under investigation as a sum of two terms, of which 
one has the same singularity as the integral being considered but is inte- 
grable in closed form, while the other contains no singularities and is Inte- 
grable by parts. 

For a < ~ < 7 let us have ~(e) " 0 and fs(B) = 0 , and cp'(B) / 0 

and f s ' ( B )  # 0 • Introducing the  notation , ( = )  - @ ( u ) . f , ( l . ~ ) / . f s ( U ) ,  where 

$(u)  I s  d i f f e r e n t l a b l e ,  we then o b t a i n  (2.2) 

.~ .y ¢~?) eikw 

1 = I * (=) e"~'~'" du = I [ * (=) ~---(~.-l. "~"~ q/ , (I3) ~ - - -  dw 

The f i r s t  te rm on the  r i g h t - h a n d  s i de  o f  ( 2 .2 )  con ta i ns  no s i n g u l a r i t i e s  and 

can be i n t e g r a t e d  by p a r t s ;  the  second may be w r i t t e n  as 
o o  o o  

~(~'i !w e''w dw = -- *'~''e'k~'dw-~ _®!.'e~dwq-l~e'k~,dw~. ( 2 . 3 )  

q~(a) -oo ) -oo 

If k > 0 and ¢(a) < ~(Y) , l.e. ~'(B) > 0 , the flrst and second terms 

in the rlght-haY~ side of (2.3) can also be integrated by parts, and the last 

one can be computed in closed form. Finally, since ~' (B) can be less than 

zero, we flnd that 

where O(u) is obtained by formal integration by parts of the left-hand side 

of (2.~). 
Asymptotic expansions for other types of Integrand slngularltles can be 

obtained in a similar way. 

In particular, for ~'(e) " 0 and ~'(D) # 0 we have 
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.y 

x~ (u ) e ik*(u) du -= ¢o \ t k(~a [ / t - -  ~ k  8¢~ a 2~:o~ ~ "3t- 
ot 

% = ~! o =~ I~=~' q~ = ~' o ~  I~=~ 

The first term of this expansion gives the formula for the stationary 

phase. 

(2.5) 

The formul~s Just obtained imply that the asympotic expansion of the inte- 
gral in the presence of singularities consists of two parts, of which one is 
obtained by formal integration by parts, while the other is associated with 
the presence of a singularity and is determined by the nature of that singu- 
larity. It is also clear that if several singular points occur within the 
limits of integration, their individual contributions must be added together. 

3. To apply the asymptotic formulas obtained above we replace the Bessel 

function in (1.?) by its integral representation 

J o ( ~ V ~  ~ + ~ 1 2 ) = ~  cos [ ~ ( ~ c o s O  + ~ l s i n O ) ] d O  

0 

and integrate over the time 

1 I dO a:osh 0t (~. -~- ~1)-~ (_~.)8+1 sin [ap cos (0 - -  O)l + = 

~t~l 0 0 

_~_ sin [z ,  + (--1)  n ctv'r cos 0 + ( - - t )  n a p  cos (~ - -  0)] } do~ (3.t) 
z + (--1)" a v  cos 0 

( p = 1 / ~ , + 1 1  ~, ~ =  ,=,-' (n/~), n > o )  

We confine ourselves to the case of subcrltlcal velocities (v < l). For 

n = 1 the denominators of the inner integral can vanish; in addition, the 

second term can have stationary points. 

For large values of p , when the order of magnitude of the ratio v/p 

is equal to unity, the contribution due to the first of the aforementioned 

singularities can be obtained with the aid of Formula (2.4) 

~(1) t i ai°'~nct,° (t + ~) c°s [ai°p c°s ( " - -  O)] { 
= 2v : ~  at ° (a ' - -v cos O) sign [cos ( @ -  0)] + 

o 

+ s i g n [  d a P cos (~ ' - -0 ]}  dO (3.2) 
Gti ° "~ 

z = ~ (=i°), ~" = g~ for = = ~° 

where at o is a root of Equation 
a = a v  cos 0 (3 .3)  

The expression within the braces in the right-hand side of ( 3 . 2 )  differs 

from zero for 
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~-  - -  ,:' P c o s  ( ~  - -  O) ( 3 . 4 )  

In this case the integral over 8 has stationary points. Differentia- 

tlng the phase function of the trigonometric factor and recallingthat 8 

and a~ ° are related by expression (3.3), we obtain the following condition 

for determining the value of a~ corresponding to th@ stationary points 

0 ~i°2V s in  0 
0-0 I a i ° c ° s ( O -  0)1 = ~--~°' cos(~-- O) ~ a .°~ s in(~--  O) = 0 (3.5) 

This equation can have two roots (t = I, 2), so that with the aid of For- 

mula (2.5) we obtain 

~ e/~h~ i (t  + ~ )  [~t ~ (v ~ + ~'~) - -  2aizc ' ] 'h 

v n -- (--I)~ (3.6) 

where q, q~ and ~" should be taken for a - ~. 

Let us consider the existence conditions for the roots of Equation (3.5). 

To thls end, we use (3.3) to eliminate 8 , 

F 
~8 

02 

or 

Fig. 3 

o ~ . ~  

= ~ = - ! ( ~ i ) ,  ! ( a i )  = ~ _  ~. ( 3 . 7 )  

Flg.3 shows the graph of the function f(a,) 

for ~ = 0.6 , whence It follows that (3.7) 

can have roots only for points lying within 

the angle 

n ~  ~-, [--f(~.)] (3.8) 
The other boundary Is given by condition 

(3.4), which upon elimination of 8 becomes 

P- < ((v ~ + C') -- 2~_']'/. 
"~ ct i ] 

a?~a?-- z~ , ¥~ ~ ~" V ~jv2ai v -6~ (3.9) 

Flg. 4 glves an overall view o f  the boundaries obtained above for u -0.6 

and • - 10.5 as well as the shapes of the equal-phase lines which are 

obtained by equating the argument of the cosine in the right-hand slde of 

(3.6) to mn (m . I, 2,...). ~%1s condition together wlth (3.7) yields a 

system of two equations wlth the parameter a, whose value may be set arbi- 

trarily. The geometric locus of the points thus obtained (broken lines in 

Fig.4) corresponds to the locus of the crests and troughs of the wave system 

In the wake of the source. Analysis of the Shape of these curves reveals 

that the points corresponding to al < a, ($ - i) glve a system of transverse 

waves, elldthosefor~hich =i>¢. ($ - 2) are associated wlth divergent waves. 
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Condition (3.9) implies that there is a region in the wake of the Source 

where only divergent waves are present (*). 

As H- = Formula (3.8) becomes the usual condition for the wake bound- 

ary ~ ~ ~ ~ mn-, (--I / VS), and (3.9) yields the circle 

In addition to the singularities considered above, the inner integral in 

(3.1) has stationary points for a = ak ° that satisfy Equation 

O~ - -  ~ ' + ( - - l ) n v c o s  0 + ( - - l ) "  ~- c o s  (~  - - 0 )  ---- 0 (3 .11)  

Then, applying Formula (2.5), for large ~ we have 

~(2) = t i ak°e°Shak°(i+~O sin [(¢~--otk"~')T--1/,~]d 0 ( 3 . ] 2 )  

o 

Integral (3.12) can also have stationary points 

given by condition 

O(p~, t)n+lCZkO [ __ ]= 0--6-= (-- v s in 0 ! s i n  (a9 -- O) 0 ( 3 . t 3 )  T 

or, upon elimination of O with the aid of (3.11), 

by cohdition 

(v + ~ / T) 2 -~- (~1 / ~)2 = (~,2 (3 . t4)  

It can be shown that Equation (3.11) for ~ > 0 

has solutions only for n = 1 ; in this case, in 

accordance with Formula (2.5), we obtain 

I ¢o,h % (1 + ~)  ( % ,~'I~ sin (~ - -  ~/,~') "~ 

~' = V'I;" cosh ~k k ~ 7  " * - -  CXkV COS O k 

v 2 + z'~ - -  (p / ,)2 
c o s  O~ - -  ( 3 . t 5 )  2v~' 

where ak is a root of Equation (3.13) or (3.14). 

Condition (3.14) implies that stationary points 

are possible only for 

(v + ~/~)  ~ + (q/-O 2 < 1  (3.t6) 

Beyond this region ~(2) = O. 

Fig 4 As has already been pointed out, in order to 

obtain the asymptotic expansion sought, we must add 

to (3.6) and (3.15) the result of integrating by parts the inner integral of 

*) [I] contains the erroneous statement that only transverse waves are p r e -  
s e n t  in this region (p. 729). As is shown below, this conclusion conflicts 
with the laws of energy transfer and wave propagation in fluids. 
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(3.1), which gives 

This component likewise differs from zero only within the circle (3.16). 

We finally obtain 

As T ~ = this clearly implies the asymptotic expansion-for the ordinates 

of the free surface with steady source motion. Fig.2 (curve 2) show the 

results of asy~totic computation for ~ = 0 and T ~ ® with the term of 

order ~ in Formula (3.6) taken into account. The resulting values are 

already in good agj~eement with the exact results for ~ ~ 1 . For comparison, 

the figure also In~s results calculated with the aid of the stationary 

phase formula (curve 3).  

Similar calculations were also carried out for the case of unsteady motion. 

As is clear from the derivation, Formula (3.15) must be valid for all p 

Including small values; this applies to ~(01, as well provided that its time- 

independent component is isolated. Hence, replacing the asymptotic expansion 

of the steady-motlon wave ordinates by their exact values in (3.17), we 

obtain an asymptotic formula applicable for all p 

(3.i8) 

The results of computations using Formula (3.18) shown in Fig.l (curve 2) 

indicate that this asymptotic formula is highly accurate in that range of 

values of v where computation by numerical integration becomes difficult. 

A slntilar method can be employed to investigate the case of disappearance 

of a source hitherto moving with a constant velocity which in the first appro- 

x~tion describes the behavior of waves durlr~ retardation of the source. 

All that is required is to find the difference in the ordinates of the waves 

during steady motion (1.8) and during acceleration (1.7). 

It should be noted in conclusion that the ranges of existence of indivi- 

dual asymptotic expansion components found above are in full agreement with 

the laws of propagation of disturbances in a fluid of finite depth. Indeed, 

their velocity cannot exceed the critical value, so that the fluid remains 

at rest outside the circle (3.16). Further, for transverse waves which turn 

out to be practically flat near the llne ~ - 0 (Fig.4), the group velocity 

is equal to a' in accordance with (3.2) and (3.7). The point which starts 

from the origin of the coordinate system bound to the source and moves with 

a velocity Q' along the x-axls for T > 0 reaches the upermost point of 

~egion (3.10) by the instant ~ in question. For this reason, all of the 

energy of the transverse waves, which, as we ~1ow, is propagated with the 

group velocity [5], turns out to have been carried over the upper boundary 

of region (3.10) by the Instant ~ , so that transverse waves are fully 

decayed with this region. 
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